Tuesday, December 17, 2019

Setting up a cross-reference tables VERSUS Helen Mironchick's approach to solve "TASK 7" MAPPING METHOD - VISIBLE PART OF ICEBERG, Informatics at school #10 2019

The key place is a detailed description of building a cross-reference table 
when moving to a new line of the system. The chart generation is just a consequence.
First consider system

   (1) F1(x1,y1,z1)=>F2(x2,y2,z2) =1
   (2) F1(x2,y2,z2)=>F2(x3,y3,z3) =1
   (3) F1(x3,y3,z3)=>F2(x4,y4,z4) =1
   (4) F1(x4,y4,z4)=>F2(x5,y5,z5) =1
where F1 and F2 are triple predicates

Denote card(N) the power of set N
Denote n1,n2,m1,m2,s1,s2
    n1=card (falseSet_F2 ∩ falseSet_F1)
    n2=card (falseSet_F2 ∩ truthSet_F1)
    m1=card (truthSet_F2 ∩ falseSet_F1)
    m2=card (truthSet_F2 ∩ truthSet_F1)
    s1=card (falseSet_F1)
    s2=card (truthSet_F1)
See Setting up a cross-reference table in 08/2016 approach of Helen Mironchick when moving to a new line of the system of Boolean equations 
for more details 
Then following 08.2016 diagram would show

   Problem 7  itself in Helen Mironchick's "MAPPING METHOD - VISIBLE PART OF ICEBERG"  Informatics at school #10 2019

  


We intend to solve this system via cross-reference tables generation versus solution of the same system proposed in  "MAPPING METHOD - VISIBLE PART OF ICEBERG"
Just build the cross-reference table for system posted above following directions outlined in the very begining of current post, i.e analyzing four intersections  of  truth and false areas of predicates F1(X,Y,Z)=(X≡Y)≡Z and F2(X,Y,Z) = XvYvZ



   References ( VK active connection might be required )
  1.  https://vk.com/doc6125348_532065916?hash=35f707cd85ea4916b4&dl=cff7c616750b78af60

No comments:

Post a Comment