Bellow we follow basic technique developed in
http://kpolyakov.spb.ru/download/mea18bit.pdf
***********************************************
Technique of calculation predicates
per Helen Mironchick
***********************************************
E(56)⊕E(25) => E(A)*¬E(24) = 1
¬E(56)*¬E(25) + E(56)*E(25) + E(A)*¬E(24) = 1
¬E(32)*¬E(16)*¬E(8)*¬E(1) +
+ (E(32) + E(16) + E(8))*(E(16) + E(8) + E(1)) + E(A)*¬E(24) = 1
¬E(32)*¬E(16)*¬E(8)*¬E(1) + E(32)*(E(16) + E(8) + E(1)) + E(16) + E(8) +
+ E(A)*¬E(16)*¬E(8) = 1
¬E(32)*¬E(1) + E(32)*(E(16) + E(8) + E(1)) + E(16) + E(8) + E(A) = 1
¬E(33) + E(32)*(E(16) + E(8) + E(1)) + E(16) + E(8) + E(A) = 1
Thus A(min) = 33
**************************
Bitwise2 Solution
**************************
¬Z(56)⊕¬Z(25) => ¬A*Z(24) = 1
¬Z(56)¬Z(25) + Z(56)*Z(25) + ¬A*Z(24) = 1
¬(Z(56) + Z(25)) + Z(57) + ¬A*Z(24) = 1
¬Z(56&25) + Z(33)*Z(24) + ¬A*Z(24) = 1
56 = 111000
& - per bit conjunction
25 = 011001
===========
24 = 011000
33 = 100001
v - per bit disjunction
24 = 011000
============
57 = 111001
56 = 111000
v - per bit disjunction
25 = 011001
===========
57 = 111000
So, we get:-
Z(56)*Z(25) = Z(57) = Z(33)*Z(24)
Proceed as folows :
¬Z(24) + Z(33)*Z(24) + ¬A*Z(24) = 1
¬Z(24) + Z(33) + ¬A = 1
(A => Z(33)) + (A => ¬Z(24)) = 1
(A => Z(33)) + (A => ¬Z(24)) = 1
Thus A(min) = 33
http://kpolyakov.spb.ru/download/mea18bit.pdf
***********************************************
Technique of calculation predicates
per Helen Mironchick
***********************************************
E(56)⊕E(25) => E(A)*¬E(24) = 1
¬E(56)*¬E(25) + E(56)*E(25) + E(A)*¬E(24) = 1
¬E(32)*¬E(16)*¬E(8)*¬E(1) +
+ (E(32) + E(16) + E(8))*(E(16) + E(8) + E(1)) + E(A)*¬E(24) = 1
¬E(32)*¬E(16)*¬E(8)*¬E(1) + E(32)*(E(16) + E(8) + E(1)) + E(16) + E(8) +
+ E(A)*¬E(16)*¬E(8) = 1
¬E(32)*¬E(1) + E(32)*(E(16) + E(8) + E(1)) + E(16) + E(8) + E(A) = 1
¬E(33) + E(32)*(E(16) + E(8) + E(1)) + E(16) + E(8) + E(A) = 1
Thus A(min) = 33
**************************
Bitwise2 Solution
**************************
¬Z(56)⊕¬Z(25) => ¬A*Z(24) = 1
¬Z(56)¬Z(25) + Z(56)*Z(25) + ¬A*Z(24) = 1
¬(Z(56) + Z(25)) + Z(57) + ¬A*Z(24) = 1
¬Z(56&25) + Z(33)*Z(24) + ¬A*Z(24) = 1
56 = 111000
& - per bit conjunction
25 = 011001
===========
24 = 011000
33 = 100001
v - per bit disjunction
24 = 011000
============
57 = 111001
56 = 111000
v - per bit disjunction
25 = 011001
===========
57 = 111000
So, we get:-
Z(56)*Z(25) = Z(57) = Z(33)*Z(24)
Proceed as folows :
¬Z(24) + Z(33)*Z(24) + ¬A*Z(24) = 1
¬Z(24) + Z(33) + ¬A = 1
(A => Z(33)) + (A => ¬Z(24)) = 1
(A => Z(33)) + (A => ¬Z(24)) = 1
Thus A(min) = 33
No comments:
Post a Comment