Saturday, October 27, 2018

One more system of boolean equations solved via "Graphs and Systems of Logical equations" by E. A. Mironchick 08/2016

  

(x1=x2) v (x1=x3) v (x2=>x3) = 1
(x3=x4) v (x3=x5) v (x4=>x5) = 1
(x5=x6) v (x5=x7) v (x6=>x7) = 1
(x7=x8) v (x7=x9) v (x8=>x9) = 1
(x9=x10) v (x9=x11) v (x10=>x11) = 1

A diagram in rows and columns showing how the truth or falsity of a proposition varies with that of its components. (truth table for first equation)
  

    Building graph and proceed with calculation :-
  
 

    Passing control on Polyakov's Server
   

      
  Another Sample

    

(x1=x2) v (x1=x3) v (x2⊕x3) =1
(x3=x4) v (x3=x5) v (x4⊕x5) =1
(x5=x6) v (x5=x7) v (x6⊕x7) =1
(x7=x8) v (x7=x9) v (x8⊕x9) =1
(x9=x10) v (x9=x11) v (x10⊕x11) =1

    Truth table

  

   Building graph
  

      Passing control on Polyakov's Server
 


      References

     1. http://kpolyakov.spb.ru/download/mea-2016-8.pdf

No comments:

Post a Comment