The system is traditionally solved by the method of bitmask masks,
since for X-th this is a well-known upper triangular matrix and it
remains to calculate the number of solutions for each of its rows,
which is not very difficult for 4 implications, but for 9 implications
with a corresponding matrix of 10 rows it will already become somewhat
tedious (manually).
Bellow follows the solution based on the construction of a complete graph
of the system with the subsequent application of the technique proposed
by E.A. Mironchik [ 1 ]. Consider a system where the use of bit masks will
require a large number of calculations and convert it as follows
Convert the system :-
(x1=>x2)^(x2=>x3)^(x3=>x4)^(x4=>x5)^(x5=>x6)^(x6=>x7)^
^(x7=>x8)^(x8=>x9)^(x9=>x10)=1
((¬x1^y1^z1) v (x1^¬y1^z1) v (x1^y1^¬z1)) =1
((¬x2^y2^z2) v (x2^¬y2^z2) v (x2^y2^¬z2)) =1
((¬x3^y3^z3) v( x3^¬y3^z3) v (x3^y3^¬z3)) =1
((¬x4^y4^z4) v (x4^¬y4^z4) v (x4^y4^¬z4)) =1
((¬x5^y5^z5) v (x5^¬y5^z5) v (x4^y5^¬z5)) =1
((¬x6^y6^z6) v (x6^¬y6^z6) v (x6^y6^¬z6)) =1
((¬x7^y7^z7) v (x6^¬y6^z7) v (x7^y7^¬z7)) =1
((¬x8^y8^z8) v (x8^¬y8^z8) v (x8^y8^¬z8)) =1
((¬x9^y9^z9) v (x9^¬y9^z9) v (x9^y9^¬z9)) =1
((¬x10^y10^z10) v (x10^¬y10^z10) v (x10^y10^¬z10)) =1
Build a complete graph for system bellow :-
(x1=>x2)^((¬x1^y1^z1) v (x1^¬y1^z1) v (x1^y1^¬z1)) =1
(x2=>x3)^((¬x2^y2^z2) v (x2^¬y2^z2) v (x2^y2^¬z2)) =1
(x3=>x4)^((¬x3^y3^z3) v( x3^¬y3^z3) v (x3^y3^¬z3)) =1
(x4=>x5)^((¬x4^y4^z4) v (x4^¬y4^z4) v (x4^y4^¬z4)) =1
(x5=>x6)^((¬x5^y5^z5) v (x5^¬y5^z5) v (x4^y5^¬z5)) =1
(x6=>x7)^((¬x6^y6^z6) v (x6^¬y6^z6) v (x6^y6^¬z6)) =1
(x7=>x8)^((¬x7^y7^z7) v (x6^¬y6^z7) v (x7^y7^¬z7)) =1
(x8=>x9)^((¬x8^y8^z8) v (x8^¬y8^z8) v (x8^y8^¬z8)) =1
(x9=>x10)^((¬x9^y9^z9) v (x9^¬y9^z9) v (x9^y9^¬z9)) =1
((¬x10^y10^z10) v (x10^¬y10^z10) v (x10^y10^¬z10)) =1
No comments:
Post a Comment