Saturday, September 1, 2018

The method of mappings (graphs and systems of logical equations) vs The method of bit masks by the example of one known system from the VKontakte newswire with a dimension of 10 instead of 4


The system is traditionally solved by the method of bitmask masks,
since for X-th this is a well-known upper triangular matrix and it
remains to calculate the number of solutions for each of its rows,
which is not very difficult for 4 implications, but for 9 implications
with a corresponding matrix of 10 rows it will already become somewhat
tedious (manually).

Bellow follows the solution based on the construction of a complete graph
of the system with the subsequent application of the technique proposed
by E.A. Mironchik [ 1 ]. Consider a system where the use of bit masks will
require a large number of calculations and convert it as follows
 
Convert the system  :-

(x1=>x2)^(x2=>x3)^(x3=>x4)^(x4=>x5)^(x5=>x6)^(x6=>x7)^
^(x7=>x8)^(x8=>x9)^(x9=>x10)=1
((¬x1^y1^z1) v (x1^¬y1^z1) v (x1^y1^¬z1)) =1
((¬x2^y2^z2) v (x2^¬y2^z2) v (x2^y2^¬z2)) =1
((¬x3^y3^z3) v( x3^¬y3^z3) v (x3^y3^¬z3)) =1
((¬x4^y4^z4) v (x4^¬y4^z4) v (x4^y4^¬z4)) =1
((¬x5^y5^z5) v (x5^¬y5^z5) v (x4^y5^¬z5)) =1
((¬x6^y6^z6) v (x6^¬y6^z6) v (x6^y6^¬z6)) =1
((¬x7^y7^z7) v (x6^¬y6^z7) v (x7^y7^¬z7)) =1
((¬x8^y8^z8) v (x8^¬y8^z8) v (x8^y8^¬z8)) =1
((¬x9^y9^z9) v (x9^¬y9^z9) v (x9^y9^¬z9)) =1
((¬x10^y10^z10) v (x10^¬y10^z10) v (x10^y10^¬z10)) =1


Build a complete graph for system bellow :-

  (x1=>x2)^((¬x1^y1^z1) v (x1^¬y1^z1) v (x1^y1^¬z1)) =1
  (x2=>x3)^((¬x2^y2^z2) v (x2^¬y2^z2) v (x2^y2^¬z2)) =1
  (x3=>x4)^((¬x3^y3^z3) v( x3^¬y3^z3) v (x3^y3^¬z3)) =1  
  (x4=>x5)^((¬x4^y4^z4) v (x4^¬y4^z4) v (x4^y4^¬z4)) =1
  (x5=>x6)^((¬x5^y5^z5) v (x5^¬y5^z5) v (x4^y5^¬z5)) =1
  (x6=>x7)^((¬x6^y6^z6) v (x6^¬y6^z6) v (x6^y6^¬z6)) =1
  (x7=>x8)^((¬x7^y7^z7) v (x6^¬y6^z7) v (x7^y7^¬z7)) =1
  (x8=>x9)^((¬x8^y8^z8) v (x8^¬y8^z8) v (x8^y8^¬z8)) =1
  (x9=>x10)^((¬x9^y9^z9) v (x9^¬y9^z9) v (x9^y9^¬z9)) =1
  ((¬x10^y10^z10) v (x10^¬y10^z10) v (x10^y10^¬z10)) =1



No comments:

Post a Comment